
Parallelizing MSF with Borůvka’s
Algorithm – 15-618 Final Project

Shubham Bhargava & Jake Zaia

Summary
We implemented Boruvka’s algorithm in ParlayLib and CUDA achieving average

computation speedups of 13.31x and 29.05x on the GHC machines using 8 CPU cores
and the GeForce RTX 2080 respectively. ParlayLib is a C++ library written by CMU
professors to implement algorithms on multi-core machines. Boruvka’s algorithm is used
to find a Minimum Spanning Forest (MSF) and is more amenable to parallelization than
Kruskal’s or Prim’s algorithm. We tested the algorithm on a variety of sparse and dense
graphs with good performance on both the CPU and GPU. The implementations were
benchmarked for performance against a sequential C++ implementation of the
algorithm, and tested for correctness against a Python implementation of Kruskal’s
algorithm. The sequential implementation was lightly optimized for running on a single
core but was not extensively optimized. We also wrote graph generators and a
benchmarking framework to support testing the correctness and efficiency of our
algorithm.

Background
Boruvka’s algorithm is a greedy algorithm for the Minimum Spanning

Tree/Minimum Spanning Forest problem. The Minimum Spanning Tree is a well-studied
graph algorithm used for finding a spanning tree for a graph with minimal weight. It has
many practical uses: water networks, electric grids, and computer networks. It is also a
subroutine of many other algorithms such as algorithms for max-cut min-flow and the
traveling salesperson problem. Due to its usefulness and the large number of algorithms
to solve it, it is typically taught to undergraduates and usually covered in a parallel
algorithms class.

Although there are other algorithms such as the Filter-Kruskal algorithm for
parallel machines and the GHS algorithm for distributed machines, we chose to
implement Boruvka’s algorithm as it is an interesting algorithm. Not only does it predate
other MST algorithms, it was originally designed to be used by humans, not computers.
Despite it seeming so simple, neither of us had heard of this algorithm before which
excited us to learn more about it. Since the algorithm can be implemented in many
ways, it makes for an interesting project to implement the algorithm and test the
performance of various approaches. Implementing the algorithm in both ParlayLib and

CUDA allows us to compare and contrast which implementation choices work well on
both the CPU and GPU.

Implementing Boruvka’s algorithm on the GPU is challenging. Past 15-418
groups have failed to do so, instead settling on using OpenMP. As such, our main
challenge is to successfully implement the algorithm on the GPU ensuring correct usage
of concurrent data structures and atomics. Moreover, we aim to produce a CUDA
implementation that can achieve a significant speedup over both the sequential and
CPU-parallel versions on the GHC machines. We chose to use CUDA for this task as
both of us are familiar with it and we have access to RTX 2080s for testing on the GHC
machines.

ParlayLib is a C++ library for developing efficient parallel algorithms on shared
multi-core machines. It was designed by CMU parallel algorithms faculty and provides a
large number of highly optimized parallel primitives including a scheduler and
concurrent memory allocator. It is written in a highly functional style which makes it
easier to convert many parallel algorithms into practical implementations.

We use it for this project as it makes it more manageable to implement the
algorithm and try various optimizations quickly. Furthermore, the programming model
seems sufficiently different from the various parallel frameworks/libraries we have seen
throughout the class which makes for a great learning experience. Since implementing
the algorithm in CUDA is hard, the ParlayLib implementation serves as a stepping stone
and a guide to a CUDA implementation. Lastly, using ParlayLib allows us to get CPU
benchmarks so we can compare our CUDA results.

The algorithm works in two stages. First, we find the cheapest edge (i.e. with
least weight) adjacent to each vertex. Then, we add all these edges to our minimum
spanning tree. This makes use of the property that the minimum edge for each vertex is
guaranteed to be in the MST (with a few caveats when multiple edges have the same
weight discussed later). As we do this, we merge both the vertices along the edge. This
results in a graph with fewer vertices. We can then rerun the algorithm on these smaller
graphs. Since the number of vertices is at most halved every iteration, the algorithm
finishes in the log V rounds where V is the number of vertices. Note that the algorithm is
intentionally vague in how these steps are implemented which leaves us with a lot of
room to determine the implementation.

The following pseudocode (courtesy of Wikipedia) illustrates the general outline of the
algorithm:

 algorithm Borůvka is
input: A weighted undirected graph G = (V, E).
output: F, a minimum spanning forest of G.

Initialize a forest F to (V, E′) where E′ = {}.

completed := false
while not completed do

Find the connected components of F and assign to each vertex
its component

Initialize the cheapest edge for each component to "None"
for each edge uv in E, where u and v are in different

components of F:
let wx be the cheapest edge for the component of u
if is-preferred-over(uv, wx) then

Set uv as the cheapest edge for the component of u
let yz be the cheapest edge for the component of v
if is-preferred-over(uv, yz) then

Set uv as the cheapest edge for the component of v
if all components have cheapest edge set to "None" then

// no more trees can be merged -- we are finished
completed := true

else
completed := false
for each component whose cheapest edge is not "None" do

Add its cheapest edge to E'

function is-preferred-over(edge1, edge2) is
return (edge2 is "None") or

(weight(edge1) < weight(edge2)) or
(weight(edge1) = weight(edge2) and

tie-breaking-rule(edge1, edge2))

function tie-breaking-rule(edge1, edge2) is
The tie-breaking rule; returns true if and only if edge1
is preferred over edge2 in the case of a tie.

The algorithm takes in a list of edges representing an undirected graph and
outputs a subset of those edges that form the minimum spanning tree. The edges are
represented by a triple, (u, v, w) where u and v are the endpoints/vertices and w is the
integer weight of the edge. We assume that the edges are sorted by u, and then by v in
the edge list. We also assume that u < v i.e. edges are undirected. This is a standard
assumption we can make as various graph file formats do so, including competitive
programming datasets.

From here on we will discuss the algorithm in terms of optimizing these two steps:
1. Finding the cheapest edge per vertex
2. Contracting the graph (combining vertices)

https://en.wikipedia.org/wiki/Component_(graph_theory)

On large and dense graphs, the first step tends to be more expensive as the total
work is proportional to the number of edges. The second step can be implemented in a
variety of ways but in our implementations, the total work is roughly proportional to the
number of vertices. The difference in time taken becomes especially apparent in the
CUDA implementation when there are many edges. Note that these steps are run in a
loop and each step is dependent on the completion of the previous one given how we
represent a graph. We also need to update the MST between steps 1 and 2 which is
handled differently in both the ParlayLib and CUDA implementations.

Approach
To represent the graph, we chose to use a list of edges as opposed to an

adjacency list as it becomes very easy to parallelize the first step. As we loop through
the edge list, we can check if that edge is the cheapest edge for either of its neighboring
vertices. We need to store the cheapest edge per vertex. This would require
synchronization to ensure multiple cores do not attempt to update the cheapest edge
per vertex simultaneously. If we used an adjacency list, we would have to parallelize
over the vertices, but if the vertices had vastly different numbers of edges, this could
result in bad load balancing. However, if each core was assigned one vertex, we
wouldn’t need to deal with synchronization in this step. This approach might have had
slightly better locality in updating the cheapest edge array, however, we address this
issue with our edge list in a later section. The edge list representation also means that
we cannot start the second part of the algorithm until we have gone through all the
edges. However, due to the relatively even workload among cores/threads, this turns
out to be a non-issue.

We also have to be mindful of breaking ties between edges with the same weight
at this step, a cause of much pain when debugging. If edges of the same weight form a
cycle, it is possible that all these edges are chosen simultaneously as the cheapest
edge per vertex and then added to the MST. Cycles are disallowed for two reasons, the
first being that the final result is no longer a valid tree/forest, and the second being that
it can cause the program to hang when traversing a part of the tree. As such, we need
some way of strictly ordering all the edges (that is consistent with ordering them by
weight). If two edges have the same weight, we choose the edge with the lower index in
the edge list. This will ensure that we can’t select a cycle of edges with the same weight
to be a part of the MST in one round of the algorithm. Initially, we used a different
ordering which turned out to be buggy for subtle reasons discussed later.

Before we do the graph contraction, we must also add the edges to our MST.
This was combined with the second step in our implementations. In ParlayLib, we used
the parlay::sequence primitive to store the list of edges in the MST. Every round, we
would use a filter on our list of cheapest edges to get rid of edges that might be double

counted and then append them to our previous list which Parlay handles efficiently.
Since we did not have an easy and efficient filter and append available to us in CUDA,
we instead kept a boolean for each of the original edges. As we iterate through the
cheapest edges in parallel, we update the boolean corresponding to the edge. We had
to be careful about not double counting edges as we kept track of the number of edges
added to our MST (which was used to determine when to terminate our algorithm in
CUDA implementation). We could check if an edge was already counted by checking
our MST boolean array atomically. Alternatively, we could check that the current edge
did not count as the cheapest edge for any other vertex. In practice, we didn’t notice any
significant difference and used the second implementation.

We used a concurrent union-find data structure to keep track of which vertices
had been merged into a single vertex. We call each set of vertices in a contracted
portion of the graph a “component”. A component forms a tree with some root vertex
responsible for maintaining information about the component itself. For our particular
implementation, the union-find was stored as an array of length n, where n represents
the number of vertices in the entire graph. Each array element tracks the cheapest edge
for the given vertex as well as a parent in the component to which the vertex belongs.
For root nodes of a component, the vertex stores itself. To union 2 components, the root
of one component must set its parent to any node contained in the other. To find the root
of a component, you must loop over the “parent” nodes until the root is reached.
However, in our parallel implementation we carefully structured our usage of union and
find operations such that we could be sure that the component trees never had a height
greater than 2 (this is further detailed in the optimizations section below). This allowed
us to omit the loop in the find operation entirely, significantly cutting down on the time
spent on such operations. Since find operations make up a significant amount of the
implementation of Boruvka’s algorithm, our custom problem-optimized union-find
implementation significantly outperformed our CUDA adaptation of the concurrent
union-find from Wait-free Parallel Algorithms for the Union-Find Problem, achieving a
1.077x speedup over our implementation of the version from this paper.

The union-find data structure formed a key component of our graph contractions.
Once we combine the vertices, we have to update our edge list to reflect the updated
contracted graph. One way to do this is to update each edge. We would replace the
vertices of an edge with the component the vertex belongs to. As such the edge would
now go between 2 components of our updated graph. This can be done efficiently using
the find operation. We noticed that this can be combined with the first step of the
algorithm: as we iterate through the edges on the algorithm's first step, we could use the
union-find to find the component for each edge’s endpoint and update the edge in the
edge list. This worked well for both our ParlayLib and CUDA implementations. For our
CUDA implementation, we also had to worry about warp sync which meant that we
would flatten our union-find trees as discussed later.

https://github.com/wjakob/dset/tree/master

One might notice that in this case, the number of edges doesn’t go down
throughout the algorithm. Instead, we obtain self-edges and multi-edges when we
merge vertices. Since self-edges can no longer contribute to the spanning tree, it is
possible to filter them out. For the ParlayLib implementation, we implemented this which
means that in every iteration, the number of edges goes down. However, due to the
nature of the algorithm, for many types of random/unstructured graphs, the number of
self-edges is low. As such, the number of edges in the edge list goes down very slowly
despite the number of vertices nearly halving every iteration. The speedup obtained
varied across test cases but was overall small. In addition, filtering the edge list results
in having to track extra auxiliary information about the edges which cancels most of the
benefits of filtering out self-edges. Implementing this filtering would be tricky in CUDA so
we tried using the CUB and Thrust libraries with no success. Due to the negligible
benefits seen in the Parlay implementation, we decided not to implement it in CUDA.

In addition to filtering self-edges, we could also replace multi-edges with the
shortest edge between the two vertices. However, this could take up to O(E + n2) space
and time where n is the current number of components. As such, this is not done in
Boruvka’s algorithm. However, when the number of components becomes sufficiently
small, we can get rid of most of the unnecessary edges in the multi-edge. At this small
scale, it likely even makes sense to switch from a CUDA implementation of Boruvka’s
algorithm to a parallel implementation of the Filter-Kruskal algorithm. This kind of
optimization requires a good number of changes to our CUDA implementation and
implementing Filter-Kruskal was beyond the scope of this project.

In our ParlayLib implementation, some of the steps mentioned earlier were
combined or separated depending on the needs. By combining steps in Parlay, we can
avoid doing multiple passes over our data structures. Parlay also provides lazy data
structures which allows us to chain certain operations easily and prevents Parlay’s
scheduler from doing multiple passes over the data. This can partly be seen when we
use map_maybe in Parlay which combines a map and a filter. Since our ParlayLib
implementation uses edge filtering, we terminate our main loop of the algorithm when
there are no more edges left across any disjoint components. This means that each of
our connected components has been merged into a single component and as such, we
are done.

For the CUDA implementation, we broke the implementation of our main loop
into three kernels. These kernels were chosen to combine similar operations and
maximize locality. The first kernel resets the cheapest edge array as well as flattens our
union-find data structure (this sets up the second kernel to perform find on a flat tree).
Although it would be possible to merge the functionality of this kernel into the other two,
it does not perform as well. The second kernel, assign_cheapest() corresponds to the
first portion of the algorithm which involves finding the cheapest step. The third kernel,
update_mst() corresponds to contracting the graph. This involves iterating through our

cheapest edge array in parallel to merge vertices along those edges. Finally, the host
copies a value from the device to determine when the MST is fully formed, and these 3
kernels are iterated until this point.

Tie-Breaking
As mentioned before, the method of tie-breaking for edges with the same weight

is extremely important. If the tie-breaking method is incoherent it can cause cycles to
form, which presents a correctness issue and can cause the program to hang. At first,
we used a method of ordering edges based on the vertices that the edge conjoined, u
and v, choosing that edges with lower values of u than v would come “first”. This is a
coherent method of breaking ties; it is even one of the examples listed in the Wikipedia
article on Boruvka’s algorithm. However, this fails to be true when accounting for an
optimization we make in the code. When selecting edges we alter the values u and v to
be the root of the associated component. This simplifies comparing edges between
components that have many vertices. However, this also introduces multi-edges,
meaning that the original method of comparing edges no longer has a strict ordering for
some edges with the same weight. The result is undefined behavior wherein cycles may
be added. Interestingly, this issue only appears in a parallel implementation, since a
sequential implementation will visit all edges in some sequential order, which prevents 2
different but equal-weight edges from being added to 2 components simultaneously,
preventing the creation of such cycles.

Synchronization
Synchronization was tricky to get right for our project, especially since we

hand-rolled our own wait-free union-find. Our union-find wouldn’t work in a general
application but was designed to be specific to our needs. In addition to using a
union-find, we had to ensure that we correctly found the cheapest edge for every vertex.
This couldn’t simply be done using an atomic minimum so we settled on using CAS. For
the CUDA implementation, we were tracking the number of components/vertices in the
graph. This was updated anytime we merged two vertices forcing us to atomically
handle this as well.

For ParlayLib, we were initially using the union-find provided by ParlayLib. It
implemented a variation of path compression (grandparent-linking) for find and provided
a simplistic union that only worked in very specific algorithms. To address this, we
implemented a simple union ourselves. However, it didn’t mesh well with the find
implementation provided by ParlayLib. Occasionally, our program would hang and we
couldn’t understand why. Any issues showed up only at 8 cores for large test cases
rarely. Eventually, we reimplemented the find function ourselves getting rid of any path
compression/shortening. We reasoned by producing small counterexamples that the
grandparent-linking interfered with our implementation of the union function. The cause

of the bug was loops being created in our union-find implementation under certain
circumstances.

We used C++ atomics for the arrays/sequences that could be simultaneously
modified by multiple threads. There was a minor implementation issue with how we
used compare_exchange_strong due to misunderstanding its unusual semantics. We
used a compare-and-compare-and-swap as opposed to a compare-and-swap in an
attempt to optimize the code (this made no practical difference in speed across tests).
As a result, any bugs arising from misusing compare_exchange_strong were incredibly
rare as the first compare would handle most synchronization issues. This made it nearly
impossible to debug. We attempted to simplify the code by removing the compare
before compare-and-swap leading to many more failing test cases which pointed us
toward the problem.

Optimizations for CUDA
Parallelizing Boruvka’s algorithm using CUDA presents a challenge since warps

execute instructions as SIMD. Boruvka’s algorithm is composed of many loops that
have unpredictable early exit points and branches. Thus, a naive translation to CUDA
will produce code that has significant thread divergence and warp stall. Indeed, our
original implementation would spend on average over 1000 cycles per operation stalled
in the worst-performing kernels. This constituted well over 90% of cycles spent
executing the kernel. Through careful optimization, we were able to reduce this to
approximately 70 cycles in the worst case by carefully organizing the access patterns of
edges.

The first optimization is to ensure that (for threads within a threadblock) all
threads are accessing similar memory locations. We were able to accomplish this by
ensuring that all edges are ordered in increasing order of the first vertex. This means
that sequential edges are very likely to act on at least 1 vertex in common. We split the
edge list into chunks where each threadblock was given 1 chunk to process. Then, we
had threads within a threadblock traverse this chunk in interleaved order. The result of
this is significantly reduced memory stall times, since each edge only occupies 12 bytes
and several edges can be read in the same cache line. Moreover, while contention on
single vertices is high, this contention is mostly contained within a threadblock (and
even more often within a warp), which is significantly preferred to distributing the
contention across different threadblocks.

An algorithmic optimization that is often made for Boruvka’s algorithm is to flatten
the component trees as they are traversed. Ordinarily, this can be done as each
component is accessed. This is typically done by updating the parent pointers as the
component tree is traversed. However, for SIMD execution this is suboptimal since it
means that some threads will spend many more iterations looping than others, which
can cause thread divergence. Moreover, checking the component associated with a

vertex is one of the most common subroutines used in Boruvka’s algorithm, so it must
be a quick operation. We eliminated the looping behavior by introducing an additional
“flatten” step that can be performed in parallel between executions of the main portion of
the algorithm. In essence, after the MST is updated, each vertex traverses its
component tree to its root and stores its root, flattening the tree maximally. Then, until
the next merge step every single component is guaranteed to be either a root or of
depth 1. Notably, for this to remain threadsafe, there is one more precaution that must
be taken: when merging components, each component must only be merged as the
“child” of another component once. If this is not the case, then merges will overwrite the
parent since it cannot loop to retrieve the root component. This is different from the
typical optimization for a sequential version of a union-find which would instead track a
rank or depth of the component trees and merge the smaller as the parent.

Another optimization we attempted was to keep two copies of every edge in our
edge list. As mentioned before, using an adjacency list to represent the graph would
mean that we would experience better locality as we tried to find the cheapest edge per
vertex. This is because, for each vertex, we can iterate through its neighbors picking the
cheapest one. Instead, parallelizing over the edges, (u, v, w), we would attempt to
update the cheapest edge for u and then v. This involved accessing different portions of
the cheapest edge array. Note that the edges were already sorted by u which means
that updating the cheapest edge for vertex u had temporal locality. However, updating
the cheapest edge for vertex v didn’t have the same locality. For a given edge, (u, v, w),
if we stored both (u, v, w) and (v, u, w) in our edge list, we could only update the
cheapest edge array for the first vertex in the edge. If these edges were all sorted by the
first component, we would gain the same locality benefits as an adjacency list. However,
implementing this involved a lot of tradeoffs. To create this sorted edge list efficiently, we
had to convert our old edge list to an adjacency list and then back to this new “directed”
edge list representation. Additionally, we had to store extra auxiliary information for each
edge. Previously, we would memory-map our large binary graph files directly into
memory. That was no longer possible due to the changed edge format. We also had to
update our edge tie-breaking function. Furthermore, our initial communication from the
CPU to the GPU increased as we had to send more auxiliary information. Although we
saw a slight improvement in CUDA running time, our preprocessing time and our total
execution time suffered greatly. It also made the code more convoluted and as such, we
opted not to do this.

Project Infrastructure
A significant portion of time was spent producing infrastructure to back this

project. Namely, gathering a collection of graphs that are undirected, weighted, large,
and representative of various types of graphs represented several hours of careful work.
Moreover, devising ways to store these graphs, which were in many cases extremely

large, and efficiently load their contents into the programs was an active challenge.
During the testing phase, we encountered correctness issues that would only appear on
specific input graphs, and these issues may not have been corrected if not for the
comprehensive benchmarking tools we created.

Ultimately, we created a benchmarking script (mstbench) that would generate
random graphs of specific structures on the fly and then execute our various
implementations several times on these graphs. These graphs were generated using
various graph generation algorithms from networkx, and written into a custom binary file
format. These files (which were in many cases several hundred megabytes) were then
saved into tmpfs and fed into the different implementations. Since simply reading the file
was the source of significant overhead, each implementation would read the file once,
and then execute the algorithm a specified number of times. This reduced the amount of
time spent loading generated graphs into memory.

Results
Benchmark Graph Types

Our benchmark set is composed of various types of graphs generated with
random weights from 1 to 1000 on each edge. Edge weights are kept to this range to
ensure that ties occur since edges that have tied weights can pose an issue for
incorrect implementations. Moreover, edge weights are allowed to vary in this range
such that the set of correct MSTs remains small to reduce non-determinism. Further
elaboration on each graph type is as follows.

Circulant Graph: A set of cycles on n vertices. The d degree circulant links every
vertex to all vertices that are ≤ ±d away from the current vertex. It is a very sparse
(2d)-regular graph.

Hypercube Graph: A graph whose edges form the hypercube in a d-dimensional
space. It is a d-regular graph on 2d vertices and is highly sparse.

Caveman Graph: A graph composed of several disjoint cliques. The caveman graph
actually does not have a minimum-spanning tree, but instead a minimum-spanning
forest. Since it is composed of many cliques, it is relatively dense, however the density
depends on the number of groups and the size of each group. The caveman graph on g
groups of size k has g*k vertices and O(gk2) edges.

Connected Caveman Graph: A graph composed of several cliques joined by 2 edges
in a cycle. This graph is extremely similar to the caveman graph, however, now 2 edges

in each clique are used to connect to other cliques making the entire graph contain a
cycle. It has the same number of vertices and edges as the caveman graph.

Erdős–Rényi Graph: A random graph of a specified density (sometimes also called the
binomial graph). This graph is completely unstructured and is used to represent a more
realistic graph layout. It has n vertices and O(pn2) edges. In our case, we consider it a
dense graph since we will set p to be comparatively high and the number of edges
scales as O(n2).

These graph types include graphs that are both highly structured and
unstructured and graphs of both high and low densities. As such, they are a
representative sample of several families of graphs that one may want to compute
using.

Speedups on Benchmark Graphs
All benchmarks were collected on the GHC machines. The ParlayLib

implementation was run using 8 cores and the CUDA version was run on a GeForce
RTX 2080. The graphs are presented with speedup relative to an optimized sequential
C++ implementation of Boruvka’s algorithm. Values are the average speedup obtained
over 10 repetitions of each implementation on each graph.

Analysis of Benchmark Results
In the graphs above we see that the effects of parallelism are most pronounced

on the largest graph types. This is especially true for the CUDA implementation which
scales much faster for the large and dense graphs, especially the largest caveman and
Erdős–Rényi graphs. On the smallest test cases such as the smallest circulant graph,
CUDA falls short of the ParlayLib implementation and in one case even fares worse
than the sequential version.

Conversely, the ParlayLib fails to scale significantly, performing only slightly
better as graphs are made larger and denser. However, even for the smallest graph, it
has a clear speedup of the sequential version. Moreover, given its limited resources of 8
CPU cores, it achieves close to or above a 4x total speedup on a majority of the test
cases. The only exceptions to this are the caveman (non-connected) and hypercube
graphs. It appears that certain types of highly regular graphs cause issues with the
ParlayLib implementation’s ability to scale.

Results of Varying Problem Size
In this section, we analyze how both implementations fair as problem size scales.

We evaluate this on the degree 3 circulant graph, which is sparse, as well as the
100-group connected caveman graph, which is comparably dense. Notably, the number
of vertices for the dense problem has to stay much lower since the number of edges
grows quadratically instead of linearly. More precisely, the circulant graph will have 3n

edges, where n is the number of vertices whereas the connected caveman graph will
have 50(k2-k) edges, where k is the group size.

As before, all benchmarks were collected on the GHC machines. The ParlayLib
implementation was run using 8 cores and the CUDA version was run on a GeForce
RTX 2080. The graphs are presented with speedup relative to an optimized sequential
C++ implementation of Boruvka’s algorithm. Values are the average speedup obtained
over 10 repetitions of each implementation on each graph.

Raw Runtimes in Seconds

Problem Size (n) ParlayLib (Total) ParlayLib (Compute) CUDA (Total) CUDA (Compute)

100000 0.0028 0.0011 0.0667 0.0112

1000000 0.0173 0.0042 0.056 0.0094

10000000 0.1641 0.0439 0.0676 0.0286

100000000 1.6524 0.4824 0.336 0.2064

Raw Runtimes in Seconds

Problem Size (n) ParlayLib (Total) ParlayLib (Compute) CUDA (Total) CUDA (Compute)

100000 0.0075 0.0017 0.0396 0.0092

1000000 0.0268 0.0059 0.0381 0.0091

10000000 0.6455 0.1577 0.1185 0.0491

100000000 2.6486 0.7388 0.3752 0.1816

As we can see, the CUDA implementation continues to scale even for extremely
large problem sizes. For reference, the input file for the k=1000 connected caveman
graph was over half a gigabyte, despite being a minimal binary file. Conversely, while
the ParlayLib implementation continues to scale on sparse graphs, it does not continue
to scale significantly for graphs with high density.

Since the ParlayLib implementation has edge filtering implemented, sparse
graphs with structure will tend to benefit especially. In edge filtering, we remove
self-edges from our edge list as we contract our graph. For sparse structured graphs
(such as the Circulant), the shortest path between any two random vertices is large
which means the algorithm tends to take more iterations, but the number of
non-self-edges goes down with the number of vertices. Whereas with denser graphs

(such as Connected-Caveman with fixed groups), the algorithm tends to take fewer
iterations and the number of non-self-edges doesn’t decrease significantly.

Scaling Obstacles for CUDA Implementation
Several obstacles prevent the CUDA implementation from scaling well. Taking

the dense graph from above as a case study, we get the following information from
nvprof:

Type Time(%) Time Calls Avg Min Max Name
GPU activities: 44.39% 228.08ms 36 6.3355ms 5.3347ms 9.2597ms assign_cheapest(void)

43.74% 224.73ms 12 18.727ms 1.1840us 56.243ms [CUDA memcpy HtoD]
11.12% 57.117ms 40 1.4279ms 704ns 14.289ms [CUDA memcpy DtoH]
0.60% 3.0905ms 36 85.846us 74.783us 143.01us update_mst(void)
0.09% 469.79us 4 117.45us 116.42us 118.98us [CUDA memset]
0.06% 323.77us 36 8.9930us 5.5670us 19.999us reset_arrs(void)
0.01% 25.984us 4 6.4960us 6.1120us 7.6160us init_arrs(void)

API calls: 41.40% 283.59ms 8 35.448ms 14.694ms 56.250ms cudaMemcpy
33.84% 231.79ms 36 6.4385ms 5.4279ms 9.4178ms cudaMemcpyFromSymbol
23.76% 162.78ms 12 13.565ms 51.866us 160.10ms cudaMalloc
0.86% 5.8650ms 12 488.75us 73.018us 1.0793ms cudaFree
0.05% 367.92us 8 45.989us 8.0250us 85.208us cudaMemcpyToSymbol
0.05% 312.70us 112 2.7910us 2.1020us 10.898us cudaLaunchKernel
0.01% 98.332us 101 973ns 94ns 38.936us cuDeviceGetAttribute
0.01% 90.189us 1 90.189us 90.189us 90.189us cudaGetDeviceProperties
0.01% 45.919us 4 11.479us 8.9970us 18.482us cudaMemset
0.01% 35.013us 1 35.013us 35.013us 35.013us cuDeviceGetName
0.00% 5.9710us 1 5.9710us 5.9710us 5.9710us cuDeviceGetPCIBusId
0.00% 3.2280us 1 3.2280us 3.2280us 3.2280us cudaGetDeviceCount
0.00% 872ns 3 290ns 147ns 578ns cuDeviceGetCount
0.00% 467ns 2 233ns 95ns 372ns cuDeviceGet
0.00% 429ns 1 429ns 429ns 429ns cuDeviceTotalMem
0.00% 224ns 1 224ns 224ns 224ns cuDeviceGetUuid
0.00% 189ns 1 189ns 189ns 189ns cuModuleGetLoadingMode

A significant portion of the time spent “processing” this graph is simply getting the
graph into GPU memory. As mentioned before, this particular input graph is over half a
gigabyte of memory, so this time must be spent to communicate the full graph to the
GPU. Compressed formats for the graph such as adjacency matrices do not parallelize
well using Boruvka’s algorithm, however, it might be possible to improve by somehow
transmitting the graph to the GPU in a compressed format, and decompressing it in
parallel somehow. This was beyond the scope of what we had the time to do for this
project.

Most of the rest of the time is spent within the kernel assign_cheapest. This is the
kernel that does the most work since it is the only kernel that must iterate over the edge
list (in this case the edge list is orders of magnitude larger than the number of vertices).
While there are likely further small optimizations we can make to assign_cheapest,

Amdahl’s law tells us that this can only serve to give at most approximately a factor of 2
speedup.

Moreover, profiling this run in NCU illuminates that most of the slowdown within
assign_cheapest is due to inefficient memory access patterns. We were able to optimize
to fix this somewhat, gaining a 3-4x speedup on the various benchmark graphs by
interleaving memory accesses within a warp. There are likely other places within the
code that could be improved to gain a further speedup (although as mentioned before,
we are limited to at most a 2x speedup due to Amdahl’s law). It’s also possible that a
portion of these slow memory accesses are due to coherency misses when different
threads attempt atomic operations on the same vertex simultaneously. Due to the
nature of this algorithm, some of these conflict misses will always exist, although there
may be some way to further hide the latency.

Results Summary
Overall, this project seems to be a success. The CUDA implementation managed

to get a significant speedup over both the sequential and the ParlayLib implementations
for sufficiently large graphs. Moreover, a majority of the remaining issues with the speed
of the CUDA implementation seem intrinsic to the algorithm or the size of the data being
operated on.

References
● A Generic and Highly Efficient Parallel Variant of Boruvka's Algorithm
● Engineering Massively Parallel MST Algorithms
● Wait-Free Union-Find implementation
● 15-210 MST Notes
● Networkx Graph Generators
● ParlayLib
● CUDA Documentation
● Wikipedia: Boruvka's Algorithm (Pseudocode snippet)

Work Distribution
Task Shubham Effort Jake Effort Relative Weight in

Project

Sequential
Implementation

0% 100% 10%

ParlayLib
Implementation

100% 0% 20%

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7092783&tag=1
https://arxiv.org/pdf/2302.12199.pdf
https://github.com/wjakob/dset/tree/master
https://www.cs.cmu.edu/afs/cs/academic/class/15210-s15/www/lectures/mst-notes.pdf
https://networkx.org/documentation/stable/reference/generators.html
https://github.com/cmuparlay/parlaylib
https://docs.nvidia.com/cuda/cuda-c-programming-guide/contents.html
https://en.wikipedia.org/wiki/Bor%C5%AFvka's_algorithm

CUDA
Implementation
(excluding
optimization)

60% 40% 30%

CUDA Optimization 40% 60% 30%

Infrastructure/Testing 0% 100% 10%

