
Parallelizing Minimum Spanning Tree Using
Borůvka’s Algorithm in Parlaylib and CUDA

Shubham Bhargava & Jake Zaia

Project Webpage Link: https://jzaia18.github.io/15618-Final/

Summary
We are going to implement an algorithm for finding the Minimum Spanning Tree

of a graph in parallel. We will be implementing this algorithm in CUDA and comparing its
performance to an optimized sequential version of the same algorithm benchmarked on
road and social network graph datasets. We will additionally be benchmarking against a
CPU parallel version implemented using parlaylib graph primitives.

Background
Finding the Minimum Spanning Tree (MST) is a common graph problem with

many applications in approximate algorithms, network design, image segmentation, and
taxonomy. Many sequential algorithms have been designed for it such as Prim, Kruskal,
and Boruvka that run in O(m log n) time. Boruvka's algorithm is commonly used for
parallel applications as it is easy to parallelize in polylogarithmic time.

Boruvka’s algorithm works by using the lightest edge property where the lightest
neighboring edge of a vertex is placed in the MST. By adding the minimum edge for
each vertex to the list of MST edges, we get a bunch of connected components. We can
treat these connected components as vertices (removing any self-edges). Then we
repeat the previous steps until all vertices are connected. This is inherently parallel as
the minimum edge for each vertex can be calculated in parallel.

The Challenge
Implementing Boruvka’s algorithm is tricky as it requires maintaining a shared

disjoint set data structure. We have to ensure fast memory access to the disjoint-set
while ensuring correctness. Optimizing the disjoint-set might involve figuring out ways to
break it down into smaller sets that don’t interact with each other as much. What makes
this truly challenging is that warps in a GPU are SIMD and traversing the disjoint set
data structure could result in divergent execution. Additionally, the disjoint set keeps
track of the connected components that act as vertices in each iteration in the algorithm.
This means that we need to contract newly connected components into vertices. It will

https://jzaia18.github.io/15618-Final/


be a challenge to choose the most efficient contraction method for this step removing
any self-edges.

We are hoping to become better CUDA programmers through this project.
Additionally, we are hoping to apply our knowledge of parallel algorithms beyond just
the asymptotics taught in class. We are hoping to implement efficient shared data
structures suited to the specific problem at hand.

Resources
Since we will be implementing this algorithm in CUDA, we will need access to

Nvidia GPUs. We are planning on using the GHC machines with the same setup as
assignment 2. Parlaylib is a header-only library, and thus requires no extra resources.
We will not be using any starter code, however as Boruvka’s is a well-studied algorithm,
plenty of pseudocode is available for reference (such as in the 15-210 and 15-852
notes). It would be interesting to test this project on the PSC machines as well, if
possible.

There are a couple of papers, (such as Paper 1, Paper 2), that attempt to
optimize parallel Boruvka’s that we can use as a reference and possibly compare
against. We can also use the same datasets as the papers used for testing in addition
to randomly generated test sets.

Goals and Deliverables
Plan to Achieve

● Implement an optimized sequential version of MST using Baruvka’s algorithm for
benchmarking the parallel version against.

● Implement a CPU parallel version of Baruvka’s in parlaylib that can be used for
further benchmarking. In the event that we encounter significant difficulty and are
unable to implement a CUDA version that achieves good speedup, we will
instead use the benchmark data of our parlaylib for analysis.

● Implement a parallel version of MST in CUDA that scales near-linearly as more
GPU threads are used. Since this algorithm is highly parallelizable, we should be
able to realize a speedup which scales well.

Hope to Achieve
● Implement a parallel version of MST that performs close to, or better than, the

existing implementations in Open MP and MPI.
● Implement an MST-approximation algorithm that performs better than existing

MST implementations while getting close to optimal results.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7092783&tag=1
https://arxiv.org/pdf/2302.12199.pdf


Platform Choice
We will be coding in C++ so we can use Parlaylib for our CPU parallel

implementation. We will be testing this implementation on the GHC and, if possible,
PSC machines to get CPU baselines to compare with our CUDA implementation. The
CUDA implementation will be tested on the lab machines. The baseline sequential
implementation will be done in C++ for fairness.

Schedule
Week Goal

Apr 1 Implement sequential version of Baruvka’s algorithm, begin programming
CPU-parallel version of Baruvka’s using parlaylib

Apr 8 Finish implementation of Baruvka’s using parlaylib

Apr 15* Intermediate milestone deadline (Apr 16)
Implement Baruvka’s in CUDA: divide parallelizable code into kernels and
ensure correctness (without speedup)

Apr 22 Begin optimizing CUDA implementation

Apr 29 Fine tune CUDA implementation and start aggregating metrics into a
presentation

May 6* Final poster presentation (May 6)

https://github.com/cmuparlay/parlaylib

